In recent years, molecular graph representation learning (GRL) has drawn much more attention in molecular property prediction (MPP) problems. The existing graph methods have demonstrated that 3D geometric information is significant for better performance in MPP. However, accurate 3D structures are often costly and time-consuming to obtain, limiting the large-scale application of GRL. It is an intuitive solution to train with 3D to 2D knowledge distillation and predict with only 2D inputs. But some challenging problems remain open for 3D to 2D distillation. One is that the 3D view is quite distinct from the 2D view, and the other is that the gradient magnitudes of atoms in distillation are discrepant and unstable due to the variable molecular size. To address these challenging problems, we exclusively propose a distillation framework that contains global molecular distillation and local atom distillation. We also provide a theoretical insight to justify how to coordinate atom and molecular information, which tackles the drawback of variable molecular size for atom information distillation. Experimental results on two popular molecular datasets demonstrate that our proposed model achieves superior performance over other methods. Specifically, on the largest MPP dataset PCQM4Mv2 served as an "ImageNet Large Scale Visual Recognition Challenge" in the field of graph ML, the proposed method achieved a 6.9% improvement compared with the best works. And we obtained fourth place with the MAE of 0.0734 on the test-challenge set for OGB-LSC 2022 Graph Regression Task. We will release the code soon.
translated by 谷歌翻译
Neural network language model (NNLM) plays an essential role in automatic speech recognition (ASR) systems, especially in adaptation tasks when text-only data is available. In practice, an NNLM is typically trained on a combination of data sampled from multiple corpora. Thus, the data sampling strategy is important to the adaptation performance. Most existing works focus on designing static sampling strategies. However, each corpus may show varying impacts at different NNLM training stages. In this paper, we introduce a novel adaptive multi-corpora training algorithm that dynamically learns and adjusts the sampling probability of each corpus along the training process. The algorithm is robust to corpora sizes and domain relevance. Compared with static sampling strategy baselines, the proposed approach yields remarkable improvement by achieving up to relative 7% and 9% word error rate (WER) reductions on in-domain and out-of-domain adaptation tasks, respectively.
translated by 谷歌翻译
[目的]要理解句子的含义,人类可以专注于句子中的重要单词,这反映了我们的眼睛在不同的凝视时间或时间保持在每个单词上。因此,一些研究利用眼睛跟踪值来优化深度学习模型中的注意力机制。但是这些研究缺乏解释这种方法的合理性。需要探索注意力机制是否具有人类阅读的这一特征。 [设计/方法/方法]我们进行了有关情感分类任务的实验。首先,我们从两个开源的眼睛追踪语料库中获得了令人眼前一亮的值,以描述人类阅读的特征。然后,从情感分类模型中学到了每个句子的机器注意值。最后,进行了比较以分析机器注意值和眼睛跟踪值。 [发现]通过实验,我们发现注意机制可以集中在重要词,例如形容词,副词和情感词,这些单词对于判断情感分类任务的句子情感很有价值。它具有人类阅读的特征,重点是阅读时的句子中的重要单词。由于注意力机制的学习不足,有些单词被错误地集中了。眼睛跟踪值可以帮助注意机制纠正此错误并改善模型性能。 [原创性/价值]我们的研究不仅为使用眼睛追踪值的研究提供了合理的解释来优化注意力机制,而且还为注意力机制的解释性提供了新的灵感。
translated by 谷歌翻译
随着互联网技术的发展,信息超载现象变得越来越明显。用户需要花费大量时间来获取所需的信息。但是,汇总文档信息的关键词非常有助于用户快速获取和理解文档。对于学术资源,大多数现有研究通过标题和摘要提取关键纸张。我们发现引用中的标题信息还包含作者分配的密钥次。因此,本文使用参考信息并应用两种典型的无监督的提取方法(TF * IDF和Textrank),两个代表传统监督学习算法(NA \“IVE贝叶斯和条件随机场)和监督的深度学习模型(Bilstm- CRF),分析参考信息对关键症提取的具体性能。从扩大源文本的角度来提高关键术识别的质量。实验结果表明,参考信息可以提高精度,召回和F1自动关键肾上腺瓶在一定程度上提取。这表明了参考信息关于学术论文的关键症提取的有用性,并为以下关于自动关键正萃取的研究提供了新的想法。
translated by 谷歌翻译
视觉变压器(VIT)在各种计算机视觉任务中的成功促进了该无卷积网络的不断增长。 VIT在图像贴片上工作的事实使其可能与拼图拼图解决的问题有关,这是一项经典的自我监督的任务,旨在重新排序洗牌的顺序图像贴片回到其自然形式。尽管它很简单,但已证明解决拼图拼图对使用卷积神经网络(CNN)(例如自我监督的特征表示学习,领域的概括和细粒度分类)的任务有帮助。在本文中,我们探索了解决拼图拼图作为图像分类的自我监督的辅助损失,名为Jigsaw-Vit。我们展示了两种修改,可以使拼图优于标准VIT:丢弃位置嵌入和随机掩盖斑块。但是很简单,我们发现拼图vit能够改善标准VIT的概括和鲁棒性,这通常是一种权衡。在实验上,我们表明,在ImageNet上的大规模图像分类中,添加拼图拼图分支比VIT提供了更好的概括。此外,辅助任务还提高了对动物-10n,食物101N和服装的嘈杂标签的鲁棒性,也可以提高对抗性示例。我们的实施可从https://yingyichen-cyy.github.io/jigsaw-vit/获得。
translated by 谷歌翻译
可以将监督学习视为将相关信息从输入数据中提取到特征表示形式。当监督嘈杂时,此过程变得困难,因为蒸馏信息可能无关紧要。实际上,最近的研究表明,网络可以轻松地过度贴合所有标签,包括损坏的标签,因此几乎无法概括以清洁数据集。在本文中,我们专注于使用嘈杂的标签学习的问题,并将压缩归纳偏置引入网络体系结构以减轻这种过度的问题。更确切地说,我们重新审视一个名为辍学的经典正则化及其变体嵌套辍学。辍学可以作为其功能删除机制的压缩约束,而嵌套辍学进一步学习有序的特征表示W.R.T.特征重要性。此外,具有压缩正则化的训练有素的模型与共同教学相结合,以提高性能。从理论上讲,我们在压缩正则化下对目标函数进行偏置变化分解。我们分析了单个模型和共同教学。该分解提供了三个见解:(i)表明过度合适确实是使用嘈杂标签学习的问题; (ii)通过信息瓶颈配方,它解释了为什么提出的特征压缩有助于对抗标签噪声; (iii)它通过将压缩正规化纳入共同教学而带来的性能提升提供了解释。实验表明,我们的简单方法比具有现实世界标签噪声(包括服装1M和Animal-10N)的基准测试标准的最先进方法具有可比性甚至更好的性能。我们的实施可在https://yingyichen-cyy.github.io/compressfatsfeatnoisylabels/上获得。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译